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Abstract

Deformation and stresses are produced not by mechanical forces alone, but by temperature variation as well. The

additional stresses of a flexible mechanism caused by the temperature change should not be ignored. The generalized

equations of motion for flexible linkage mechanisms, in which the thermal effects are taken into account, are developed by

utilizing the virtual work method and the finite element theory in this paper. Since the determination of thermal stresses

plays an important role in the design of mechanisms operating at elevated temperatures, the stress–strain relationship

should include the effects of temperature. Based on the closed-form numerical algorithm, the equations are solved and the

recursive scheme is proved to be efficient and converged in a few iterations for the cases examined. The Runge–Kutta

method is also applied to study the transient response of the temperature change. Numerical solution results show that a

small change of temperature will cause a significant change of the stresses of a flexible mechanism. The effects of

temperature change should not be ignored when analyzing the dynamic performance of flexible mechanisms.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past 30 years, due to the development of high-speed machinery, robots, and aerospace structures, a
considerable amount of research has addressed problems associated with the flexibility of members in flexible
mechanisms. Many mechanisms are being required to run at higher speeds while maintaining greater
positioning accuracy. This tendency has arisen as engineers have been challenged to design machines for
increased levels of speed and accuracy subject to restrictions on weight and power requirements. However, the
lighter members are more likely to elastically deform or vibrate due to the inertial and external forces. Thus, it
becomes necessary to include the dynamic behavior of the mechanism system.

A number of investigators have conducted analyses of flexible mechanisms, employing both continuous and
discrete systems. The importance of dynamic analysis of elastic mechanism systems has long been realized and
three reviews of the research in this area may be broadly classified, based on the modeling approach, into two
categories [1,2]. The first approach, which originated earlier, models the elastic links as continuous systems
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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possessing infinite degrees of freedom [3–6]. All these works model and analyze mechanism systems which
have only one elastic member and the other members are typically assumed to be rigid bodies. The links are all
considered to be straight rods or beams with the exception of Badlani and Midha [7].

In the second category, the flexible links of the mechanism are modeled as discrete systems. Generally, this
approach has been facilitated by the lumped parameter method [8–11] and the finite element methods [12–29].
The lumped parameter method developed by Sadler and Sandor has also been successfully implemented in the
analysis of elastic mechanism. The lumped parameter method consists of modeling the continuous mass
distribution of a linkage by placing a number of lumped masses at discrete locations along the linkage.
Winfrey [12,13], Erdman et al. [14], and Imam et al. [15] were among the first to apply the finite element
method to solve dynamic problems of the flexible mechanism systems. The finite element method provides an
easier and systematic modeling technique for complex mechanisms and lays the groundwork for a general
approach to the modeling of elastic mechanisms. However, in most of these works the net motion or the total
motion of the system is considered to be a superposition of the rigid-body motion and the elastic motion. The
rigid-body motion is treated as being governed only by kinematics and rigid-body dynamics and not
influenced by the elastic motion. Some of these works address rigid-body motion and elastic motion coupling
terms, but these coupling terms only represent the effect of the rigid-body motion on the elastic motion and
not the effect of the elastic motion on the rigid-body motion [25–29]. Turcic and Midha [18–20] verified
experimentally that the assumption that the rigid-body motion is uninfluenced by the elastic motion is valid
and accurately represents mechanism systems like an elastic four-bar crank rocker mechanism with a large
flywheel at the crank.

The third approach belongs to the second category. But most research works take into account the coupling
between the rigid body and elastic motions, because in the area of robotics and control there exist a number of
research works where manipulators with open-loop chains made up of elastic links are modeled [30–34].
Nagarajan and Turcic [32,33] allowed for the rigid-body motion and the elastic motion to influence each other,
and both rigid-body degrees of freedom and the elastic degrees of freedom are considered as generalized
coordinates in the derivation: these equations represent a more realistic model of a light-weight high-speed
mechanism, having closed- and open-loop multi-degrees of freedom chains, and geometrically complex elastic
links.

In recent years, more and more research on flexible linkage mechanisms has been reported. Most of these
works refer to active vibration control [35–38], feedback control [39,40], active noise control with a
piezoelectric actuator [40], optimal control [41–44], composite control [45] and simulative design [46], etc.
More research on beam theories is also being carried out [47–56]. Manoach and Ribeiro [53] studied
geometrically nonlinear vibrations of moderately thick beams under the combined action of mechanical and
thermal loads. The results indicated that short heat pulses with high magnitudes might cause vibrations with
considerably large amplitudes. Li et al. [54,55] analyzed large thermal deflections of a Timoshenko beam
subjected to transversely non-uniform temperature rise by using the shooting method. His work showed that
shear deformation effects became significant with a decrease of slenderness and increase of shear flexibility.
Zhang and Bradford [56] described the development of a rectangular layered flat plate/shell element for the
nonlinear finite element analysis of reinforced concrete slabs at elevated temperatures; the element was based
on the Mindlin–Reissner plate theory and on Timoshenko’s composite beam functions. The results showed
that nonlinear effects were important and the finite element model incorporated geometric nonlinearity and
temperature-dependent material nonlinearity under temperature loading. However, the above research did not
consider the thermal effects in the dynamic flexible system, and the effects of temperature change were not
taken into account in the dynamic equation of motion.

This paper is organized as follows: Section 2 processes the relationship between the total strain and the
stress. Section 3 introduces the shape function with a quintic polynomial. In Section 4, the generalized
equations of motion for flexible linkage mechanisms, in which the thermal effects are taken into account, are
developed by utilizing the virtual work method and the finite element theory. The temperature distribution
through the cross section will be assumed not to vary along the length of the element. In Section 5, based on
the closed-form numerical algorithm developed by Midha et al. the equations are solved and the convergence
condition is presented. The Runge–Kutta method is also applied to study the transient response of the
temperature change. Numerical solution results of one linkage mechanism are presented in Section 6; both the
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steady response and the transient response of the temperature change are studied, and some concluding
remarks are made in Section 7.
2. Stress–strain relations

Deformation and stresses are produced not by mechanical forces alone, but by temperature variation as
well. The additional stresses of a mechanism caused by the temperature change should not be ignored. The
mechanical and thermal aspects are coupled and inseparable, which complicates the computational aspect of
solving actual problems considerably. However, it is generally possible to discount the coupling and to
evaluate the temperature and deformation fields separately.

The thermal strains (thermal dilatations) in an unrestrained element may be expressed as [57]

�Tij
¼ dijaT DT ; i; j ¼ x; y; z (1)

where aT is the coefficient of thermal expansion. For isotropic and homogeneous materials this coefficient is
independent of the direction and position of the element but may depend on the temperature. DT is the change
of temperature, dij, defined as

dij ¼
1; i ¼ j;

0; iaj

(
(2)

If the initial strain matrix e0 is known, the total strain matrix e, including the thermal strain matrix eT, can
be expressed as [58]

e ¼ eþ eT þ e0 (3)

and

r ¼ Deþ r0 ¼ Dðe� eT � e0Þ þ r0 ¼ DeþDTaTDT �D�0 þ r0 (4)

where matrix e represents the elastic strains required to maintain continuity of displacements due to external
loads and thermal and initial strains. The elastic strains are related to the stresses through Hooke’s law. D is
the constitutive law matrix. r0 represents the residual stress matrix.
3. Shape function of the planar frame element

The shape function is a quintic polynomial for the lateral displacement and a linear function of the
longitudinal displacement. For a two-dimensional planar frame element, there are eight displacements:
longitudinal displacements q1 and q5, lateral displacements q2 and q6, elastic rotational angles q3 and q7, and
section curvatures q4 and q8. The eight nodal displacements are shown in Fig. 1. The temperature distribution
through the cross section will be assumed not to vary along the length of the element.
q2 q6

q1

q3

q5

q7

y

x
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q8q4
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Fig. 1. Planar frame element.
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According to the element finite method, the shape function can be defined as [59]

N ¼
Nx

Ny

" #
¼

N11 0 0 0 N15 0 0 0

0 N22 N23 N24 0 N26 N27 N28

" #
(5)

where

N11 ¼ 1� x; N22 ¼ 1� 10x3 þ 15x4 � 6x5; N23 ¼ lðx� 6x3 þ 8x4 � 3x5Þ,

N24 ¼
l2

2
ðx2 � 3x3 þ 3x4 � x5Þ; N15 ¼ x; N26 ¼ 10x3 � 15x4 þ 6x5

N27 ¼ lð�4x3 þ 7x4 � 3x5Þ; N28 ¼
l2

2
ðx3 � 2x4 þ x5Þ; x ¼

x̄

l
(6)
4. Formulation of equations of motion

In this study, virtual work principle is used for developing the equations of motion of the flexible mechanism
systems.

Fig. 2 shows two positions of a planar frame element and the associated coordinate systems. The reference
coordinate system OXY is fixed to the ground. The origin of the oxy coordinate system is defined at a general
point on the undeformed element, and it follows the rigid-body motion of the element. The Oxy coordinate
system is also attached to the ground but is rotated so that it remains parallel to the oxy system. p is a general
point on the undeformed element, and p0 is the corresponding point of p on the deformed element.

The position vector R, measured in the reference system, can be expressed as

R ¼ R0 þ Tmd (7)

where vector R0 locates the origin of local oxy system in the reference system, vector d which is measured in the
local coordinate system represents the generalized displacement (caused by the elastic deformation of the
element) of point p. Tm is the transformation matrix between the oxy system and the reference coordinate
system and depends on the gross motion of the system only. Matrix Tm is defined as [19]

Tm ¼
cos y � sin y

sin y cos y

" #

_Tm ¼
_y
� sin y � cos y

cos y � sin y

" #
d

R0

p

p′

X

Y

x

y

x

y

O

o
u

v

R

�

Fig. 2. Planar frame element and associated coordinate systems.
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€Tm ¼
€y
� sin y � cos y

cos y � sin y

" #
� _y

2 cos y � sin y

sin y cos y

" #
(8)

where y is the angular orientation of the element.
Differentiating Eq. (7) twice with respect to time, and considering the relations

d ¼ Nqe (9)

one obtains

€R ¼ €R0 þ €TmNqe þ 2 _TmN _qe þ TmN €qe (10)

where d ¼ fu vgT, qe ¼ f q1 q2 q3 q4 q5 q6 q7 q8 g
T are the nodal displacements of the element, and

matrix N is the shape function described in Eqs. (5) and (6).
The principle of virtual work for the nodal system of the element can be expressed as [60]Z

V

deTrdV ¼

Z
V

ddTf b dV þ

Z
S

ddTf s dS þ dqeTf �

Z
V

rddT €d dV (11)

where dd ¼ Ndqe, de is the total strain variation vector, r the stress vector, dd the virtual displacement vector,
fb the actual body forces and fs the surface forces, r the mass density, and €d the acceleration vector of point p

in the nodal system. V and S represent the volume and surface area of the body before deformation.
The third term on the right-hand side of Eq. (11) represents the virtual work of external forces f in moving

through the corresponding virtual displacements dqe.
Acceleration vector €d can be rewritten as [27]

€d ¼ TT
m
€R (12)

and €R0 can be expressed as

€R0 ¼ T 0mN €qe
0 (13)

Substituting Eqs. (10) and (13) into Eq. (12) yields

€d ¼ TT
mT 0mN €qe

0 þ TT
m
€TmNqe þ 2TT

m
_TmN _qe þ TT

mTmN €qe

¼ N €qe
0 þ TT

m
€TmNqe þ 2TT

m
_TmN _qe þN €qe (14)

where €qe
0 represents the generalized (absolute) rigid-body velocities of the nodal degrees of freedom of the

element measured in the fixed Oxycoordinate system. Tm
0 is the transformation matrix from the Oxy

coordinate system to the OXY coordinate system. Transformation matrix Tm
0 is similar to matrix Tm, since the

Oxy system is parallel to the oxy system. The difference between the two transformation matrices is that the
time derivatives of matrix Tm

0 ( _T
0

m and €T
0

m) are equal to zero because Tm
0 is simply the transformation matrix

between two fixed coordinate systems.
For the planar frame element undergoing bending, its strain has the form

e ¼
qu

qx
�y

q2v

qx2

" #T
(15)

where qu=qx represents axial stretching and �yðq2v=qx2Þ is the strain produced by curvature q2v=qx2.
Eq. (15) can also be expressed as

e ¼ Bqe (16)

de ¼ Bdqe (17)

where

B ¼
q
qx

Nx �y
q2

qx2
Ny

" #T
(18)
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Substituting Eqs. (4), (14), (16) and (17) into Eq. (11), one obtains

Z
V

deTrdV ¼

Z
V

dqeTBTðDBqe þDTaTDT �De0 þ r0ÞdV

¼ dqeT
Z

V

BTDB dVqe þ dqeT
Z

V

BTDTaTDT dV � dqeT
Z

V

BTDe0 dV þ dqeT
Z

V

BTr0 dV (19)

Z
V

ddTf b dV ¼ dqeT
Z

V

NTf b dV (20)

Z
S

ddTf s dS ¼ dqeT
Z

S

NTf s dS (21)

Z
V

rddT €d dV

¼ dqeT
Z

V

rNTN dV €qe
0 þ

Z
V

rNTTT
m
€TmN dVqe þ 2

Z
V

rNTTT
m
_TmN dV _qe þ

Z
V

rNTN dV €qe

� �
(22)

With arbitrary virtual displacement dqeT , Eq. (11) becomes

Z
V

rNTN dV €qe þ 2

Z
V

rNTTT
m
_TmN dV _qe þ

Z
V

BTDB dVqe þ

Z
V

rNTTT
m
€TmN dVqe

¼

Z
V

NTf b dV þ

Z
S

NTf s dS þ f þ

Z
V

BTDe0 dV �

Z
V

BTr0 dV �

Z
V

BTDTaTDT dV �

Z
V

rNTN dV €qe
0

(23)

For a uniform planar frame element, the above equation can be integrated along a longitudinal orientation;
then, matrices D and DT can be expressed as

D ¼
E 0

0 E

� �
; DT ¼

�E

�E

� �
(24)

Eq. (23) in compact form is

me €qe þ 2mvele _qe þ ðke
þmacceÞqe ¼ f e

� f e
T �me €qe

0 (25)

where

me ¼

Z
V

rNTN dV ;mvele
¼

Z
V

rNTTT
m
_TmN dV ;ke

¼

Z
V

BTDB dV ;macce ¼

Z
V

rNTTT
m
€TmN dV

f e
¼

Z
V

NTf b dV þ

Z
S

NTf s dS þ f þ

Z
V

BTDe0 dV �

Z
V

BTr0 dV ; f e
T ¼

Z
V

BTDTaTDT dV (26)

Let TT
R represent the transformation matrix that transforms the degrees of freedom to the reference

coordinate system. Let Ue ¼ fU1 U2 U3 U4 U5 U6 U7 U8 g
T represent the new set of transformed

degrees of freedom, one obtains

Ue ¼ TT
Rqe (27)
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where Ue is in the global coordinate system and TR is defined as [33]

TR ¼

cos y sin y 0 0 0 0 0 0

� sin y cos y 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 cos y sin y 0 0

0 0 0 0 � sin y cos y 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

(28)

Since TR is an orthogonal matrix, one obtains

qe ¼ TRUe; _qe ¼ TR
_U

e
þ _TRUe; €qe

¼ TR
€U

e
þ 2 _TR

_U
e
þ €TRUe; €qe

0 ¼ TR
€U

e

0 (29)

Substituting Eq. (29) into Eq. (25) and premultiplying by TT
R yields

Me €U
e
þ 2ðMDe þMVELeÞ _U

e
þ ðKe þMDDe þ 2MDVELe þMACC e

ÞUe ¼ Qe
f �Qe

T �Me €U
e

0 (30)

where

Me ¼ TT
RmeTR; MDe ¼ TT

Rme _TR; MVELe ¼ TT
RmveleTR;K

e ¼ TT
RkeTR; MDDe ¼ TT

Rme €TR

MDVELe ¼ TT
Rmvele _TR; MACC e

¼ TT
RmacceTR; Qe

f ¼ TT
Rf e; Qe

T ¼ TT
Rf e

T (31)

Expanding Eq. (30) to the system size and combining all the element equations, we introduce the compatible
matrix TB of the coordinate system.where

Ue ¼ TBU ; _U
e
¼ TB

_U ; €U
e
¼ TB

€U ; €U
e

0 ¼ TB
€U0 (32)

Substituting Eq. (32) into Eq. (30) and by premultiplying TT
B, the equations of motion for the system are

stated as

M €U þ 2ðMDþMVELÞ _U þ ðK þMDDþ 2MDVELþMACCÞU ¼ Qf �QT �M €U0 (33)

where

M ¼
XNe

i¼1

TT
BiM

e
i TBi; MD ¼

XNe

i¼1

TT
BiMDe

i TBi; MVEL ¼
XNe

i¼1

TT
BiMVELe

i TBi; K ¼
XNe

i¼1

TT
BiK

e
i TBi,

MDD ¼
XNe

i¼1

TT
BiMDDe

i TBi; MDVEL ¼
XNe

i¼1

TT
BiMDVELe

i TBi; MACC ¼
XNe

i¼1

TT
BiMACC e

i TBi

Qf ¼
XNe

i¼1

TT
BiQ

e
fi; QT ¼

XNe

i¼1

TT
BiQ

e
Ti (34)

Let matrix C represent the viscous damping matrix. Incorporating the matrix damping term C _U , the
equations of motion of the entire mechanism can be expressed as

M €U þ ðC þ 2MDþ 2MVELÞ _U þ ðK þMDDþ 2MDVELþMACCÞU ¼ Qf �QT �M €U0 (35)

5. The solution of the equation of motion

Eq. (35) can be rewritten as

M €U þ C _U þ KU ¼ Qf �QT �M €U0 � 2ðMDþMVELÞ _U � ðMDDþ 2MDVELþMACCÞU (36)

where M, C, and K represent the system mass, damping, and stiffness matrices, respectively; €U , _U , U,
and €U0 are the acceleration, velocity, displacement, and rigid-body acceleration, respectively, of the
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degrees-of-freedom describing the mechanism system. The non-symmetric matrices MD, MVEL, MDD,
MDVEL, and MACC represent coupling between the gross motion and the elastic velocity _U and the
deformation U, respectively.

An iteration method is presented for solving the equation of motion (36), which is expressed in a recursive
form:

M €U
ðlÞ
þ C _U

ðlÞ
þ KU ðlÞ

¼ Qf �QT �M €U0 � 2ðMDþMVELÞ _U
ðl�1Þ
� ðMDDþ 2MDVELþMACCÞU ðl�1Þ (37)

where subscript l denotes the iteration number.
In the first iteration, l ¼ 1 and U(l�1)

¼ U(0)
¼ 0, _U

ðl�1Þ
¼ _U

ð0Þ
¼ 0. The following equation is solved for

_U
ð1Þ

and U(1) in each time subinterval:

M €U
ð1Þ
þ C _U

ð1Þ
þ KU ð1Þ ¼ Qf �QT �M €U0 (38)

The convergence condition for the recursive scheme is given by

U ðlÞ �U ðl�1Þ
�� ��

F
p� (39)

where Uk kF is the Frobenius norm [61] of matrix U and e the infinitesimal positive number.
The modal analysis can be carried out based on the following equation:

ðK ðl�1Þ � ðoðl�1ÞÞ2M ðl�1ÞÞUðl�1Þ ¼ 0 (40)

where U denotes mode shapes, and

U ðlÞ ¼ Uðl�1ÞgðlÞ; _U
ðlÞ
¼ Uðl�1Þ _gðlÞ; €U

ðlÞ
¼ Uðl�1Þ €gðlÞ (41)

ðUðiÞÞTMF ðjÞ ¼
1; i ¼ j;

0; iaj;

(
ðUðiÞÞTMUðjÞ ¼

o2
i ; i ¼ j;

0; iaj

(
(42)

Substituting Eqs. (41) into Eq. (37) and premultiplying by ðUðl�1ÞÞT, one obtains

€gðlÞr þ 2zro
ðl�1Þ
r _gðlÞr þ ðo

ðl�1Þ
r Þ

2gðlÞr ¼ N f r
�N cr

_gðl�1Þr �Nkr
gðl�1Þr ðr ¼ 1; 2; . . . ; nrÞ (43)

where zr is the damping ratio of the rth mode, nr is the number of truncated modes, g is the vector of modal
coordinates associated with U, and

N f ¼ ðU
ðl�1ÞÞ

T
ðQf �QT �M €U0Þ

N c ¼ 2ðUðl�1ÞÞTðMDþMVELÞUðl�1Þ

Nk ¼ ðU
ðl�1ÞÞ

T
ðMDDþ 2MDVELþMACCÞUðl�1Þ (44)

A closed-form numerical algorithm developed by Midha and Erdmann [62] was used to solve Eqs. (43); the
recursive scheme is proved to be efficient and converged in a few iterations for the cases examined.

The above method is mainly used in the condition of steady state, but for the transient state, Eqs. (43) can
be solved by the Runge–Kutta method. Eqs. (43) can be rewritten as

€gðtiÞ þ ðC̄ðtiÞ þN cðtiÞÞ_gðtiÞ þ ðX
2
ðtiÞ þNkðtiÞÞgðtiÞ ¼ N f ðtiÞ (45)
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where

C̄ðtiÞ ¼

2z1ðtiÞo1ðtiÞ 0 � � � 0

0 2z2ðtiÞo2ðtiÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 2znr
ðtiÞonr

ðtiÞ

2
6666664

3
7777775

nr�nr

X2
¼

o2
1ðtiÞ 0 � � � 0

0 o2
2ðtiÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � o2
nr
ðtiÞ

2
66666664

3
77777775

nr�nr

o1ðtiÞoo2ðtiÞo � � �oonr
ðtiÞ

where ti is the ith time subintervals.
Let X1 ¼ g, X2 ¼ _g.
Eq. (45) can be expressed as

dX1ðtiÞ

dt
dX2ðtiÞ

dt

8>><
>>:

9>>=
>>; ¼

0nr�1

N f ðtiÞnr�1

" #
þ

0nr�nr
Enr�nr

�ðX2
ðtiÞ þNkðtiÞÞnr�nr

�ðC̄ðtiÞ þN cðtiÞÞnr�nr

" #
X1ðtiÞ

X2ðtiÞ

( )
(46)

where E is the identity matrix, and

X1ðtiÞ ¼ fg1ðtiÞ; g2ðtiÞ; . . . ; gnr
ðtiÞg

T; X 2ðtiÞ ¼ f_g1ðtiÞ; _g2ðtiÞ; . . . ; _gnr
ðtiÞg

T

The Runge–Kutta method is proved to be efficient in the following cases.

6. Numerical result

To verify the thermal effect under a uniform temperature change, one linkage mechanism is studied. Fig. 3
illustrates the basic configuration of an actual four-bar linkage mechanism. The parameters defining the
mechanism are listed in Table 1. It is constructed of aluminum strips; for the link dimensions chosen, each of
the members may be treated as a slender beam and modeled with beam finite elements. The crank runs at six
different speeds, from slow to a reasonably high speed (200–600 rev/min). In the analytical model, a total of 10
elements are employed, the crank is divided into two elements, while the coupler and the follower are both
divided into four elements. The fundamental time period is divided into 128 equal time subintervals.

It is assumed that the temperature of the mechanism is a function of time. Fig. 4 shows the curve of the
temperature versus the time [63]. The initial temperature is 20 1C, and it increases nonlinearly to 28.2 1C in 15 s.

The function between the temperature and the time can be established by the curve fitting method. In this
paper, a sextic polynomial is employed in order to have the best fit for the curve of Fig. 4, which can be
expressed as

TðtÞ ¼
a0 þ a1tþ a2t

2 þ a3t
3 þ a4t

4 þ a5t5 þ a6t6; 0ptp15 s;

a0 þ a1ts þ a2t
2
s þ a3t

3
s þ a4t4s þ a5t5s þ a6t

6
s ; when t415 s; then ts ¼ 15 s

(
(47)

where

a0 ¼ 20; a1 ¼ 3:90212415700095; a2 ¼ �0:871130281057564; a3 ¼ 0:112740167433368,

a4 ¼ � 0:00859429768001374; a5 ¼ 0:000355360208944467; a6 ¼ �6:11226105887796� 10�6
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Fig. 3. Four-bar mechanism.

Table 1

Four-bar mechanism parameters

Parameter Crank Coupler Follower

Length (mm) 98.8 302 300

Width (mm) 25 25 25

Thickness (mm) 3 3 3

Distance between ground pivots (mm) 332.2

Lumped mass of the bearing assembly at the crank-coupler connection (kg) 0.1308

Lumped mass of the bearing assembly at the coupler-follower connection (kg) 0.113

Modulus of elasticity (Pa) 7.102� 1010

Weight density (kg/m3) 2712

The coefficient of thermal expansion aT (K�1) 23� 10�6
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Now we will study both the transient responses and the steady responses of the mechanism to the
temperature changes at six different speeds.

Firstly, we study the transient response to the temperature changes according to the curve shown in Fig. 4.
In order to study the transient response of the mechanism to the temperature changes at six different crank
speeds, the transient time is divided into different equal fundamental time segments (50, 75, 100, 125, and 150,
respectively) and each fundamental time period is also divided into 128 equal time subintervals. Hence in each
time subintervals one can use the Runge–Kutta method to study the transient response of the system.

Figs. 5–24 show the transient responses of the stresses at the coupler midpoint and the follower midpoint of
the mechanisms at six different crank speeds. Figs. 7, 8, 11, 12, 15, 16, 19, 20, 23 and 24 show the transient
responses of the stresses in the first 5 s. The temperature of the mechanism follows Fig. 4. From Fig. 4, one
finds that the temperature changes very fast in the first 0–5 s, and then changes slowly in the following 5–15 s.
From Figs. 5–24, one finds that the changes of stresses are nonlinear and depend on the changes of the
temperature. The stresses also change fast in the first 0–5 s, and then change slowly in the following 5–15 s.
When the temperature reaches a steady state (the time is more than 15 s), the change of the stresses also
becomes steady.



ARTICLE IN PRESS

0 5 10 15
Time/s

20 25 30
20

21

22

23

24

Te
m

pe
ra

tu
re

/°
C

25

26

27

28

29

Fig. 4. The change of the temperature.

0 5 10 15 20 25 30
-5

0

5

10

15

20

Time/s

C
ou

pl
er

 S
tre

ss
/M

P
a

Fig. 5. Stresses at the coupler midpoint in 30 s at a crank speed of 200 rev/min.
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Secondly, we study the steady-state response of the mechanism to different temperature changes. Here we
will compare stresses both at the coupler midpoint and at the follower midpoint between the analytical results
of Ref. [18] not taking into account the thermal effects and the present method taking into account the thermal
effects under different temperature changes at six different crank speeds.

Table 2 shows the absolute maximum stresses of the coupler midpoint under different temperature changes
at six different crank speeds. Table 3 shows the absolute maximum stresses of the follower midpoint under
different temperature changes at six different crank speeds, and the change of temperature 0 1C is the
analytical results of Ref. [18] not taking into account the thermal effects. From Tables 2 and 3, one finds that
the more the temperature rise or decrease, the more significant the absolute maximum stresses both at the
coupler midpoint and at the follower midpoint. Under the same temperature change, the absolute maximum
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Fig. 6. Stresses at the follower midpoint in 30 s at a crank speed of 200 rev/min.
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Fig. 7. Stresses at the coupler midpoint in 0–5 s at a crank speed of 200 rev/min.
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stresses both at the coupler midpoint and at the follower midpoint are different at six different crank speeds.
Under the same temperature change, the higher the crank speed, the larger the maximum stresses are.

To illustrate the thermal effects under a uniform temperature change in the steady state, here we mainly
study the response of the mechanism at a crank speed of 400 rev/min.

The dashed line in Fig. 25 indicates stresses at the coupler midpoint of the analytical results of Ref. [18] not
taking into account the thermal effects, and the solid line represents the analytical results of the present
method taking into account the thermal effects under the change of temperature 1 1C. The absolute maximum
stress of the analytical results of Ref. [18] at the coupler midpoint is 18.13MPa, while the absolute maximum
stress of the analytical results of the present method is 19.81MPa. The absolute maximum difference value
between the two lines in Fig. 25 is 1.70MPa, while the absolute minimum value is 1.62MPa.

The dashed line in Fig. 26 indicates stresses at the follower midpoint of the analytical results of Ref. [18] not
taking into account the thermal effects, and the solid line represents the analytical results of the present
method taking into account the thermal effects under the change of temperature 1 1C. The absolute maximum
stress of the analytic results of Ref. [18] at the follower is 15.92MPa, while the absolute maximum stress of the
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Fig. 9. Stresses at the coupler midpoint in 30 s at a crank speed of 300 rev/min.
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Fig. 8. Stresses at the follower midpoint in 0–5 s at a crank speed of 200 rev/min.

W. Hou, X. Zhang / Journal of Sound and Vibration 319 (2009) 570–592582
analytical results of the present method is 14.33MPa. The absolute maximum difference value between the
two lines in Fig. 26 is 1.64MPa, while the absolute minimum value is 1.59MPa.

Fig. 27 shows stresses at the coupler midpoint under the effects of temperature changes �10, �5, �1, 0, 1, 5,
and 10 1C, and the line under the temperature change 0 1C represents the analytical results of Ref. [18]
not taking into account the thermal effects. The absolute maximum stress of each analytical results shown in
Fig. 27 is 31.10, 22.92, 16.44, 18.13, 19.81, 26.54, and 34.96MPa, respectively. The absolute maximum
difference values between the results of Ref. [18] and the present method are 17.02, 8.51, 1.70, 1.70, 8.51, and
17.02MPa, respectively; while the absolute minimum difference values are 16.16, 8.08, 1.62, 1.62, 8.08, and
16.16MPa, respectively.

Fig. 28 shows stresses at the follower midpoint under the effects of temperature changes �10, �5, �1, 0, 1, 5
and 10 1C, and the line under the temperature change 0 1C represents the analytical results of Ref. [18]
not taking into account the thermal effects. The absolute maximum stress of each analytical results shown in
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Fig. 10. Stresses at the follower midpoint in 30 s at a crank speed of 300 rev/min.
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Fig. 11. Stresses at the coupler midpoint in 0–5 s at a crank speed of 300 rev/min.
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Fig. 28 is 31.88, 23.90, 17.52, 15.92, 14.33, 19.83, and 27.98MPa, respectively. The absolute maximum value
between the results of Ref. [18] and the present method is 16.36, 8.18, 1.64, 1.64, 8.18, and 16.36MPa,
respectively, while the absolute minimum value is 15.86, 7.93, 1.59, 1.59, 7.93, and 15.86MPa, respectively.

The results of Figs. 25–28 indicate that a small change of temperature will cause a significant change of the
stresses of the flexible mechanism at a crank speed of 400 rev/min. It was also found that the thermal effect
also causes significant responses under a uniform temperature change at the other crank speeds. It is found
that the more the temperature rise or decrease, the more significant the absolute maximum difference values
and the absolute minimum difference values between the results of Ref. [18] and the present method both at
the coupler midpoint and at the follower midpoint. In the steady state, the absolute maximum difference
values or the absolute minimum difference values almost keep linearly increasing or decreasing under different
temperature changes at the same crank speed. Under the same temperature change, the absolute maximum
difference values remain almost the same at six different crank speeds, and so do the absolute minimum
difference values. The results of Figs. 5–28 and Tables 2 and 3 indicate that a small change of temperature will
cause a significant change of the stresses of a flexible mechanism and whether the stresses increase or decrease
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Fig. 12. Stresses at the follower midpoint in 0–5 s at a crank speed of 300 rev/min.
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Fig. 13. Stresses at the coupler midpoint in 30 s at a crank speed of 400 rev/min.
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linearly or nonlinearly depend on the change of temperature. The effects of temperature change should not be
ignored when analyzing the dynamic motion of flexible mechanisms.

7. Summary and conclusions

The generalized equations of motion for flexible linkage mechanisms, in which the thermal effects and
elastic deformation are taken into account, are derived by utilizing the virtual work method and the finite
element theory in this paper. Based on the closed-form numerical algorithm, the equations are solved and the
recursive scheme is proved to be efficient and converged in a few iterations for the cases examined. The
Runge–Kutta method is also applied to study the transient response of the temperature change.

Numerical solution results of a flexible linkage mechanism indicate that: (1) a small change of temperature
will cause a significant change of the stresses of a flexible mechanism. (2) The more the temperature rise or
decrease, the more significant the stresses of a flexible mechanism. (3) Whether the stresses increase or decrease
linearly or nonlinearly depends on the function of the temperature to the time during the transient response



ARTICLE IN PRESS

0 1 2 3 4 5
-30

-20

-10

0

10

20

30

40

Time/s

C
ou

pl
er

 S
tre

ss
/M

P
a

Fig. 15. Stresses at the coupler midpoint in 0–5 s at a crank speed of 400 rev/min.
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Fig. 14. Stresses at the follower midpoint in 30 s at a crank speed of 400 rev/min.
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Fig. 16. Stresses at the follower midpoint in 0–5 s at a crank speed of 400 rev/min.
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Fig. 17. Stresses at the coupler midpoint in 30 s at a crank speed of 500 rev/min.
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Fig. 18. Stresses at the follower midpoint in 30 s at a crank speed of 500 rev/min.

0 1 2 3 4 5
-60

-40

-20

0

20

40

60

Time/s

C
ou

pl
er

 S
tre

ss
/M

P
a

Fig. 19. Stresses at the coupler midpoint in 0–5 s at a crank speed of 500 rev/min.
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Fig. 20. Stresses at the follower midpoint in 0–5 s at a crank speed of 500 rev/min.
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Fig. 21. Stresses at the coupler midpoint in 30 s at a crank speed of 600 rev/min.
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Fig. 22. Stresses at the follower midpoint in 30 s at a crank speed of 600 rev/min.
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Fig. 23. Stresses at the coupler midpoint in 0–5 s at a crank speed of 600 rev/min.
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Fig. 24. Stresses at the follower midpoint in 0–5 s at a crank speed of 600 rev/min.

Table 2

The absolute maximum stresses of the coupler midpoint under different temperature changes at six different crank speeds

Change of temperature, DT (1C) The absolute maximum stresses of the coupler midpoint (MPa)

200 rev/min 300 rev/min 400 rev/min 500 rev/min 600 rev/min

�10 18.66 24.25 31.10 54.96 65.51

�5 10.54 15.86 22.92 46.65 57.24

�1 4.04 9.15 16.44 40.00 50.63

0 2.42 7.47 18.13 38.34 48.98

1 3.54 9.14 19.81 36.68 47.33

5 10.33 15.85 26.54 37.08 42.69

10 18.82 24.23 34.96 45.46 51.15
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Table 3

The absolute maximum stresses of the follower midpoint under different temperature changes at six different crank speeds

Change of temperature, DT (1C) The absolute maximum stresses of the follower midpoint (MPa)

200 rev/min 300 rev/min 400 rev/min 500 rev/min 600 rev/min

�10 18.47 21.22 31.88 42.62 49.43

�5 10.47 13.21 23.90 34.64 41.49

�1 4.07 6.83 17.52 28.25 35.14

0 2.47 5.71 15.92 26.66 33.55

1 3.07 7.34 14.33 25.06 31.96

5 9.58 13.84 19.83 29.68 37.19

10 17.72 21.96 27.98 37.81 45.34
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Fig. 25. Stresses at the coupler midpoint as a function of crank angle at a crank speed of 400 rev/min.
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Fig. 26. Stresses at the follower midpoint as a function of crank angle at a crank speed of 400 rev/min.
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Fig. 27. Stresses at the coupler midpoint under different temperature changes at a crank speed of 400 rev/min.
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Fig. 28. Stresses at the follower midpoint under different temperature changes at a crank speed of 400 rev/min.
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same as the stresses increasing or decreasing linearly during the steady response under uniform temperature
change. (4) Under the same temperature change, the higher the crank speed, the larger the maximum stresses.

The effects of temperature change should not be ignored when analyzing the dynamic performance of a
flexible mechanism.
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